Impaired critical period plasticity in primary auditory cortex of fragile X model mice.
نویسندگان
چکیده
Fragile X syndrome, the most common form of heritable mental retardation, is a developmental disorder with known effects within sensory systems. Altered developmental plasticity has been reported in the visual and somatosensory systems in Fmr1 knock-out (KO) mice. Behavioral studies have revealed maladaptive auditory responses in fragile X syndrome patients and Fmr1 KO mice, suggesting that adaptive plasticity may also be impaired in the auditory system. Here we show that, whereas tonotopic frequency representation develops normally in Fmr1 KO mice, developmental plasticity in primary auditory cortex is grossly impaired. This deficit can be rescued by pharmacological blockade of mGluR5 receptors. These results support the mGluR hypothesis of fragile X mental retardation and suggest that deficient developmental plasticity may contribute to maladaptive auditory processing in fragile X syndrome.
منابع مشابه
Failed Stabilization for Long-Term Potentiation in the Auditory Cortex of Fmr1 Knockout Mice
Fragile X syndrome is a developmental disorder that affects sensory systems. A null mutation of the Fragile X Mental Retardation protein 1 (Fmr1) gene in mice has varied effects on developmental plasticity in different sensory systems, including normal barrel cortical plasticity, altered ocular dominance plasticity and grossly impaired auditory frequency map plasticity. The mutation also has di...
متن کاملCritical Period Plasticity Is Disrupted in the Barrel Cortex of Fmr1 Knockout Mice
Alterations in sensory processing constitute prominent symptoms of fragile X syndrome; however, little is known about how disrupted synaptic and circuit development in sensory cortex contributes to these deficits. To investigate how the loss of fragile X mental retardation protein (FMRP) impacts the development of cortical synapses, we examined excitatory thalamocortical synapses in somatosenso...
متن کاملAltered structural and functional synaptic plasticity with motor skill learning in a mouse model of fragile X syndrome.
Fragile X syndrome (FXS) is the most common inherited intellectual disability. FXS results from a mutation that causes silencing of the FMR1 gene, which encodes the fragile X mental retardation protein. Patients with FXS exhibit a range of neurological deficits, including motor skill deficits. Here, we have investigated motor skill learning and its synaptic correlates in the fmr1 knock-out (KO)...
متن کاملAge-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein.
Synaptic function and plasticity were studied in mice lacking the fragile X mental retardation protein (FMRP), a model for the fragile X mental retardation syndrome. Associational connections were studied in slices of anterior piriform (olfactory) cortex, and Schaffer-commissural synapses were studied in slices of hippocampus. Knock-out (KO) mice lacking FMRP were compared with congenic C57BL/6...
متن کاملCircuit and plasticity defects in the developing somatosensory cortex of FMR1 knock-out mice.
Silencing of the Fmr1 gene causes fragile X syndrome. Although defects in synaptic plasticity in the cerebral cortex have been linked to cognitive impairments in Fmr1 knock-out (ko) mice, the specific cortical circuits affected in the syndrome are unknown. Here, we investigated the development of excitatory projections in the barrel cortex of Fmr1 ko mice. In 2-week-old Fmr1 ko mice, a major as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 40 شماره
صفحات -
تاریخ انتشار 2013